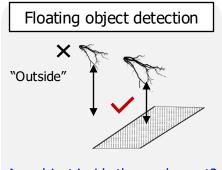

3D Boundary Integration Based Stair Region Reconstruction in Floating Object Detection for Visually Impaired People

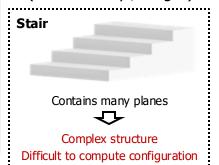
沈志謙 池永研究室 修士課程修了

Background

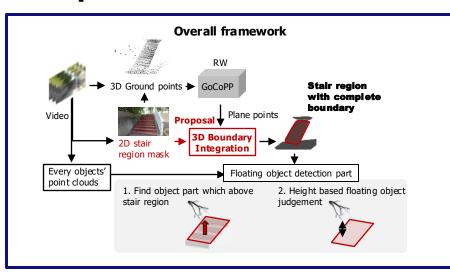


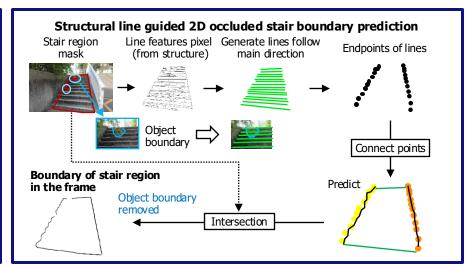
55% visually impaired get hit more than once a month

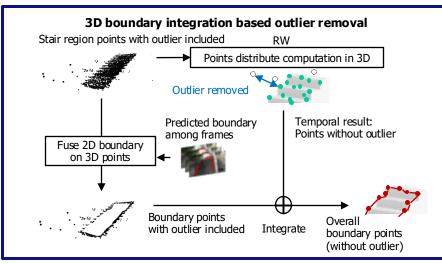
Cannot detect & High collision risk

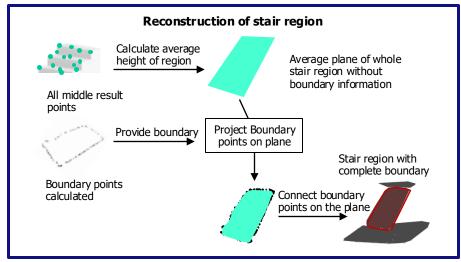

Dangerous

Challenges




Any object inside the road or not? If has, then what is its height?


Ground configuration (ex. boundary / height)



- ◆ **Target** Designed a stair reconstruct method in used of floating object detection
- Proposals

Experiment Results

Stair Type	Method	Stair angle		Floating object entry location		
		Gentle	Steep	Side	Above	Overall
Ascending	Baseline	0.43	0.25	0.40	0.33	0.36
	Baseline + Proposal	0.71	0.75	0.60	0.83	0.73
Descending	Baseline	0.63	1.00	0.50	1.00	0.73
	Baseline + Proposal	0.88	1.00	0.83	1.00	0.91
Total	Baseline		0.55	Baseline + Proposal		0.82

♦ Conclusion

■ Detection rate is defined here under a threshold of height difference of each object's real height; proposed method raises detection rates from 0.36 to 0.73 (ascending), from 0.73 to 0.91 (descending), and from 0.55 to 0.82 overall.

